(#-Cyclopentadienyl) trioxorhenium'

Since the key compound trioxo(n^5 -pentamethylcyclopentadieny1)rhenium. as the first example to demonstrate the compatibility of organic π -ligands with high oxidation state metals (e.g., Re^{vu}), was obtained in 1984,^{2,3} numerous derivatives and reactions have been reported.^{3,4} However, any attempt to apply the successful synthetic routes to the synthesis of the hitherto unknown parent compound *(q5-cyclopentadienyl)trioxorhenium* remained unsuccessful. Moreover, no mononuclear compound of formula $(C_sH_s)MO_s$ has been reported in the literature up to the present.

It was argued that the Lewis acidity of unsubstituted $(\eta^5$ -C₅H₅)ReO₃ at the metal would be so dominant that further reactions would occur or that the binding of the five-membered ligand is insufficient because of the missing methyl groups.⁵ On the other hand, the existence of Lewis acid σ -alkyl and σ -aryl compounds of formula $R-ReO₃$ (e.g., $R = CH₃, C₆H₅$)⁶ very much bring into question this tentative explanation, thus encouraging synthetic attempts. Here we report on the successful preparation of the title compound C₅H₅ReO₃ (3a) and its monomethylated derivative **3b.**

Oxidation of the carbonylrhenium(1) precursor compounds $(\eta^5$ -C₅H₄R)Re(CO)₃ with various reasonable oxidizing reagents (e.g., oxygen/light,² hydrogen peroxide,^{7a-c} dimanganese heptaoxide,^{7d} and dimethyldioxirane^{7e}) yielded intractable products. Reaction of Re03Cl with Na[CsHs] does not yield **30** either.' We therefore chose to introduce the cyclopentadienyl ligand into dirhenium heptaoxide **(l),** which, **as** a precursor compound, is more readily available anyway. However, cyclopentadienyl complexes of magnesium, cadmium, mercury, and tin did not react with **1** in the expected sense. The synthesis of title compound **3a** was finally achieved by treating an exactly 2-fold molar amount of dirhenium heptaoxide **1** with freshly prepared, sublimed bis(cyc1opentadienyl)zinc **(2a.b)** in tetrahydrofuran, according to *eq* 1.89

- **(1)** Communication **98** of the series Multiple Bonds between Main Group Elements and Transition Metals. Communication **97:** Kunkely, H.; Tllrk, T.; Teixeira, C.; de M€ric de &Ilefon, C.; Hemnann, W. A,; Vogler, A. *J.* Chem. *Soc.,* Chem. Commun., in press.
- **(2)** (a) Herrmann, W. A,; Serrano, R.; Bock, H. Angew. *Chem.* **1984,96, 364;** Angew. Chem., Inf. Ed. Engl. **1994,23,383.** (b) Klahn-Oliva, A. H.; Sutton, D. Organometallics 1984, 3, 1313.
- **(3)** Comprehensive review articles: (a) Herrmann, W. A. *J. Orgunomel.* Chem. 1986, 300, 111. (b) Herrmann, W. A.; Herdtweck, E.; Flõel,
M.; Kulpe, J.; Küsthardt, U.; Okuda, J. Polyhedron 1987, 6, 1165. (c)
M.; Kulpe, J.; Küsthardt, U.; Okuda, J. Polyhedron 1987, 6, 1165. (c)
Herrmann, W. A. A Ed. Engl. **1988,27,1297.** (d) Herrmann, W. A. *J. Orgunomer.* Chem. **1990,382, I.**
- **(4)** Reviews on organometallic oxides in general: (a) Nugent, W. A.; Mayer, J. M. *Merul-Ligund* Mulriple Bonds; Wiley-Interscience: New **York, 1988.** (b) Bottomley, F.; Sutin, L. Adv. *Orgunomef.* Chem. **1988, 28, 339.**
- *(5)* **Szyperski,** T.; Schwerdtfeger, P. Angew. Chem. **1989,101,1271;** Angew.
- Chem., Int. Ed. Engl. 1989, 28, 1228.
(6) (a) Herrmann, W. A.; Ladwig, M.; Kiprof, P.; Riede, J. J. Organomet.
Chem. 1988, 371, C13. (b) Herrmann, W. A.; Romao, C. C.; Fischer,
R. W.; Kiprof, P.; de Méric de Bellefon, C. A
- 183; *Angew. Chem., Int. Ed. Engl.* 1991, 30, 185.
(7) (a) Herrmann, W. A.; Voss, E.; Flöel, M. J. Organomet. Chem. 1985, 297, C5. (b) Herrmann, W. A.; Okuda, J. J. Mol. Catal. 1987, 41, 109.
(c) Herrmann, W. A.; Kuchler, E.; Kiprof, P. *J. Organomet. Chem.* 1989, 372, 351. (d) Herrmann, W.
A.; Kiprof, P.; Rypdal, K.; Tremmel, J.; Blom, R.; Alberto, R.; Behm,
J.; Albach, R. W.; Bock, H.; Solouki, B.; Mink, Lichtenberger, D.; Gruhn, N., N. E. J. Am. Chem. Soc., in press. (e) Wolowiec, S., Kochi,
J. *Inorg. Chem.* 1991, 30, 1215. (f) Riedel, A. Diploma Thesis,
Universität München, 1963. These results agree with our own observations: only oxidation of the cyclopentadienyl reagent occurs. amounts of $\hat{3}$ are formed upon treatment of Re_2O_7 with (C_5H_5) Ti(O i-C,H7),; cf.: Jung, K. A. Ph.D. Thesis, Technische Universitat Mllnchen, **1990.**

Table I. Infrared and **I7O** NMR Data for Organic Rhenium(VI1) Oxides of Formula RReO,

complex	solvent	$\nu(\text{Re}=0)$, ^{<i>a</i>} cm ⁻¹	δ, ppm
$(\eta^5 - C_5 H_5)$ ReO ₃	CH ₂ Cl ₂	933 m, 907 vs	691 (CDCl ₃)
	KBr	925 m. 888 vs	
	Nuiol	929 m, 885 vs	
$(\eta^5$ -C ₅ H ₄ Me)ReO ₃	CH ₂ Cl ₂	930 m, 898 vs	674 (CDCl ₃)
	KBr	925 m. 889 sh. 878 vs	
$(\eta^5$ -C ₅ Me ₅)ReO ₃	C_6H_6	920 m, 890 s	646 (CDCl ₃) ^b
	CS,	922 s-vs, 892 vs	
	KBr	909 s-vs, 878 vs	
	CH ₂ Cl ₂	918 m, 886 s	
CH ₃ ReO ₃	C_6H_6	999 w, 966 vs	829 (CDCl ₁)
	CS,	1001 w, 965 vs	
	KBr	1005 w. 958 vs. br	
	CH ₂ Cl ₂	1000 w, 966 vs	
$(\eta^1$ -C ₆ H ₅)ReO ₃	KBr	986 m, 956 s	972 (pentane)
	CCL	988 m, 960 s	

Abbreviations: Me = CH_3 ; vs = very strong, s = strong, m = medium, sh = shoulder, $w = weak$. b Kneuper, H. J.; Härter, P.; Herrmann, **W. A.** *J.* Orgunomef. *Chem.* **1988,** *340,* **353.**

The components react even at -80 °C, with the insoluble zinc-perrhenate **4a** being formed as a colorless precipitate. After evaporation of the solvent in vacuo at $0^{\circ}C$, the product was extracted into toluene, giving a yellow solution from which the title compound 3a was crystallized at -30 °C as yellow needles. **3a** is stable at room temperature and up to 130–180 °C (slow decomposition) and is soluble in common organic solvents. The compound is not air-sensitive but undergoes slow decomposition upon exposure to light. **3a** can be sublimed in vacuo at ca. **50** $\rm ^{\circ}C/(10^{4}$ Torr).

Title Compound: A π -Complex. The C₅H₅ ligand shows a single sharp signal both in the ¹H and ¹³C^{{1}H} NMR spectra, $\delta(H)$ = 6.60 ppm and δ (C) = 118.6 ppm, respectively (THF- d_8 , 20 °C). This pattern does not change upon cooling the samples to -100 °C (THF- d_8), thus making σ -coordination highly unlikely. The

- (8) The preparation of 3b is as follows. To a solution of Re₂O₇ (968 mg, 2 mmol) in THF (30 mL) at -80 °C was added dropwise a solution of $Z_n(C_2H_3)$ (195 mg, 1 mmol)⁹⁴ in THF (20 mL). The mixture was allowed to warm slowly to room temperature and then stirred for ap-
proximately 2 h until the color of the solution turns black. The mixture was protected from light during the time of the reaction. The resulting
solution was evaporated to dryness in vacuo at 0 °C, and the residue
was extracted once into n-pentane (20 mL) and then into toluene (5 ×
40 mL) unti **40** mL) until the extracts become colorless. After the toluene fractions were cooled to **-20** OC, yellow **microcrystals** formed. **These wcre** filtered and dried in vacuo to yield 270 mg (45%) of 3a. The mother liquors
were combined, concentrated to ca. 50 mL, and cooled to 30 °C to
afford another crop of 3a (60 mg). Total yield: 330 mg (56% on the
basis of eq 1). IR KBr s, 1428 m, 3101 m [ν (C—H)]. IR (CH₂Cl₂, cm⁻¹): 933 m, 907 vs
[ν (Re—O)]; further bands, 844 m, 1016 w, 1466 w, 2926 m, 3115 m
[ν (C—H)]. ¹H NMR (20 °C, ppm): δ 5.70 (C₆D₆), 6.94 (CDCl₃), 6.93 (CD2C12), **6.60** (THF-ds). IH NMR **(-60** OC, pm): **6 6.99** (CDCI]). IH NMR **(-100** OC, ppm): **6.76** (THF-d8). C(HI NMR **(20** OC, ppm): δ 113.8 (CDCl₃), δ 114.2 (CD₂Cl₂), 118.6 (THF-d₈). ¹³C{¹H}
NMR (-100 °C, ppm): δ 118.2 (THF-d₈). ¹³C NMR (20 °C, ppm):
δ 114.1 (d quint, ¹J_{CH} = 181.6 Hz, ²J_{CH} = ³J_{CH} = 6.4 Hz, CD₂Cl₂), 117.8 (d quint, ${}^{1}J_{CH} = 173$ Hz, ${}^{2}J_{CH} = {}^{3}J_{CH} = 6.1$ Hz, (THF- d_8).
Elemental analyses (C, H, Re) confirm the composition C₅H₅O₃Re.
EI-MS: $m/z = 300$ (parent ion, ¹⁸⁷Re). Slow decomposition with brown col 130-180 °C; no defined melting point. The preparation of (CH₃C₅procedure. Yield: **50%** on the basis of *eq* **1.** IR (KBr, cm-l) **925 m, 889** sh, **878 s** [v(Rd)]; further bands, **838** w, **855** m, **1040** w. **¹⁴⁹⁰** m, 2361 w, 3100 m [ν (C-H)]. IR (CH₂Cl₂, cm⁻¹): 930 m, 898 vs
[ν (Re-O)]; further bands, 847 m, 875 w, 1034 w, 1520 m, 3110 m
[ν (C-H)]. ¹H NMR (20 °C, ppm): δ 6.85 [AA'BB', 2 H], 6.32 **(s, 3** H, CD2CI,). 13C\lHJ NMR **(20** *OC,* ppm): **6 136.9 113.9, 106.9, 13.6 (CD₂Cl₂).** ¹³C NMR (20 °C, ppm): δ 136.9 (s), 113.9 (dm, ¹J_{CH} $=$ **182.5 Hz**), **106.9** (dm, $^1J_{CH} = 178$ Hz), **13.6** (q, $^1J_{CH} = 130$ Hz, CD₂Cl₂). Elemental analyses (C, H, Re) confirm the composition $C_6H_7O_3Re$. EI-MS: $m/z = 314$ (parent ion, ¹⁸⁷Re). 173 Hz , $^{2}J_{\text{CH}} = ^{3}J_{\text{CH}}$ 130–180 °C; no defined meiting point. The preparation of (CH₃C₃-
H₄)ReO₃ (2b) from Re₂O₇ and Zn(CH₃C₃H₄)₂⁹ follows the above [AA'BB', **2** HI, **2.39 S, 3** H, CDCI,), **6.86 (2** H), **6.34** (t. **2** H), **2.37**
- *(9)* (a) Lorberth, J. J. *Orgunomel.* Chem. *1%9,19,* **189.** (b) Fischer, B.; Boersma, J.; van Koten, 0. New J. Chem. **1988, 12,613.**

Figure 1. ORTEP representation of the crystal and molecular structure of **(\$-methylcyclopentadienyl)trioxorhenium(VII) (3b),** without hydrogen atoms. Thermal ellipsoids are drawn to **50%** probability. Selected bond distances (pm) and angles (deg): Re-O1 = 173.1 (3), Re-O2 = center of $C_5H_4CH_3$ ligand). 171.8 (3), Re-O3 = 171.1 (3), Re-C = 236.0 (3)-245.9 (3); O1-Re-O2 $= 105.7$ (1), O2-Re-O3 = 104.5 (1), Cp-Re-O1 = 114.4 (1) (Cp =

'H NMR pattern of **3b** (see below) rules out both rigid and dynamic a-coordination. Infrared spectra of **3a** and **3b** support the presence of aromatic π -ligands (Table I). In accord with the structural assignment of *-complexation, the *"0* NMR and IR data for the *ReO* moiety are much closer to those of $(\eta^5$ - $C_5Me_5)ReO_3$ than to those of the σ -alkyl series R-ReO₃ (Table **1).**

It can be seen that methylation of the ring ligand C_5H_5 leads to lower *Re0* bond strength (lower stretching frequencies) due to the $+I$ effect of methyl groups.

(η^5 -Methylcyclopentadienyl)trioxorhenium (3b) was synthesized in the same way from **1** and **2b,** according to eq 1. Spectra and physical properties of this compound are similar.

The above structural assignment was demonstrated for the crystalline phase by an X-ray diffraction study (Figure 1).¹⁰

(10) Crystal data for $3b$ ($ReC_6H_7O_3$): yellow columns, $0.1 \times 0.02 \times 0.03$ Crystal data for 3b (ReC₆H₇O₃): yellow columns, 0.1 × 0.02 × 0.03
mm; *M_r* = 313.3; space group *P*2₁/c (No. 14); *a* = 6.000 (1) Å; *b* =
10.724 (1) Å; *c* = 10.644 (1) Å, β = 91.99 (1)°; *V* = 684 (1) Å³; Z **4**; $d_{\text{calc}} = 3.04$ g cm⁻³; Enraf-Nonius CAD4-instrument; 295 **K**; Cu Kα (λ = 1.541 84 Å); scan method, w/2 θ ; data collection range, 1° < θ < 65O; total number of data measured, 1356 **(81** systematic absences and 147 reflections with negative intensity were eliminated, the number of unique data being 1128); total number of data used 1118 (10 peaks were removed due to bad agreement); solution by heavy atom methods (Patterson and Fourier) with full-matrix least-squares refinement to convergence (number of refined parameters 92); extinction corrected, $\epsilon = 3.78 \times 10^{-6}$; $R = 0.031$; $R_w = 0.030$; GOF = 3.87; from final difference Fourier maps, a residual electron density of $+1.2$ and -2.2 e/A', respectively (87 and 93 pm from Re).

While **3a** is disordered, the less symmetrical methyl derivative **3b** shows an almost undistorted π -coordination of the C_s ring ligand, with relatively *long* Re...C bonds of 236.0 (3) -245.9 (3) pm as compared to those of the *low-valent* congeners $(\eta^5$ - C_5H_5)Re(CO)₃ (228 pm, average)¹¹ and (η ⁵-C₅H₄SiMe₃)Re(CO)₃ (230 pm, average).^{11b} This result is due to the pronounced π donator capability (trans influence) of metal-attached oxo groups.

The analogous imido complexes $(C_5H_5)Re(=NR)_3$ and $(C_5Me_5)Re(=NR)$, have escaped isolation inspite of the extraordinarily high thermal stability of the σ -allyl complex $(\eta^1$ - $C_3H_5)Re(=NR)$ ₃ (R = $-C_6H_3$ -2,5-(CH₃)₂).¹² It was suggested that π -coordination of the C₅H₅ ligand at tris(imido)rhenium fragments is not favored.12

Compound **3a** is the first example within the series $(C_5H_5)MX_3$, with X representing oxo or imido groups $=$ O or $=$ NR, respectively. A recent failure to access such compounds happened to Wilkinson et al., who, in unspecified yields, obtained a strangely composed oxygen-containing compound by treatment of CIRe- $(=\overline{NR})$, with $\text{Na}[\text{C}_5\text{H}_5]$.¹³ In light of our results, there is no doubt that imido complexes $(C_5H_5)Re(=NR)_3$ will become accessible by appropriate synthetic routes, even if the C_5H_5 ligand may be σ -bonded.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz Award to W.A.H.), the Alexander von Humboldt Foundation (fellowships to M.T. and C. M.B.), and the Hanns-Seidel-Stiftung (fellowship to J.B.).

Supplementary Material Available: Tables of anisotropic temperature factors and hydrogen atom coordinates for **3b**, complete lists of atomic coordinates, bond distances, and **bond** angles, and a unit cell diagram **(7** pages); a listing of structure factors (7 pages). Ordering information is given on any current masthead page.

- (1 1) (a) Fitzpatrick, P. J.; **Lc Page, Y.;** Butler, I. *S. Acta Crystallogr., Sect. B* **1981,37,** 1052. **(b)** Harrison, W.; Trotter, J. *J. Chem. Soc., Dalton Trans.* 1972,678.
- (12) (a) Herrmann, W. A.; Weichselbaumer, G.; Paciello, R. **A.;** Fischer, R. A.; Herdtwcck, E.; Okuda, J.; Marz, D. W. *Organometallics* **1990,** *9,* 489. (b) Cook, **M.** R.; Herrmann, W. A.; Takacs, J.; Kiprof, P. *J.*
- *Chem. Soc., Dalton Trans.* **1991,** 797. (1 3) Danopoulos, A. A,; Wilkinson. G.; Williams, D. J. J. *Chem. Soc., Chem. Commun.* **1991,** 181.

Received March 29, 1991