
$(\eta^{5}-Cyclopentadienyl)trioxorhenium^{1}$

Since the key compound trioxo(η^5 -pentamethylcyclopentadienyl)rhenium, as the first example to demonstrate the compatibility of organic π -ligands with high oxidation state metals (e.g., Re^{VII}), was obtained in 1984,^{2,3} numerous derivatives and reactions have been reported.^{3,4} However, any attempt to apply the successful synthetic routes to the synthesis of the hitherto unknown parent compound $(\eta^5$ -cyclopentadienyl)trioxorhenium remained unsuccessful. Moreover, no mononuclear compound of formula $(C_5H_5)MO_n$ has been reported in the literature up to the present.

It was argued that the Lewis acidity of unsubstituted (η^5) $C_{5}H_{5}$ ReO₃ at the metal would be so dominant that further reactions would occur or that the binding of the five-membered ligand is insufficient because of the missing methyl groups.⁵ On the other hand, the existence of Lewis acid σ -alkyl and σ -aryl compounds of formula R-ReO₃ (e.g., R = CH₃, C₆H₅)⁶ very much bring into question this tentative explanation, thus encouraging synthetic attempts. Here we report on the successful preparation of the title compound $C_5H_5ReO_3$ (3a) and its monomethylated derivative 3b.

Oxidation of the carbonylrhenium(I) precursor compounds $(\eta^5-C_5H_4R)Re(CO)_3$ with various reasonable oxidizing reagents (e.g., oxygen/light,² hydrogen peroxide,^{7a-c} dimanganese heptaoxide,^{7d} and dimethyldioxirane^{7e}) yielded intractable products. Reaction of ReO₃Cl with Na[C₄H₅] does not yield 3a either.⁷ We therefore chose to introduce the cyclopentadienyl ligand into dirhenium heptaoxide (1), which, as a precursor compound, is more readily available anyway. However, cyclopentadienyl complexes of magnesium, cadmium, mercury, and tin did not react with 1 in the expected sense. The synthesis of title compound 3a was finally achieved by treating an exactly 2-fold molar amount of dirhenium heptaoxide 1 with freshly prepared, sublimed bis(cyclopentadienyl)zinc (2a,b) in tetrahydrofuran, according to eq 1.89

- (1) Communication 98 of the series Multiple Bonds between Main Group Elements and Transition Metals. Communication 97: Kunkely, H.; Türk, T.; Teixeira, C.; de Méric de Bellefon, C.; Herrmann, W. A.; Vogler, A. J. Chem. Soc., Chem. Commun., in press.
- (2) (a) Herrmann, W. A.; Serrano, R.; Bock, H. Angew. Chem. 1984, 96, 364; Angew. Chem., Int. Ed. Engl. 1984, 23, 383. (b) Klahn-Oliva, A. H.; Sutton, D. Organometallics 1984, 3, 1313.
- Comprehensive review articles: (a) Herrmann, W. A. J. Organomet. Chem. 1986, 300, 111. (b) Herrmann, W. A.; Herdiweck, E.; Flöel, M.; Kulpe, J.; Küsthardt, U.; Okuda, J. Polyhedron 1987, 6, 1165. (c) Herrmann, W. A. Angew. Chem. 1988, 100, 1269; Angew. Chem., Int. Ed. Engl. 1988, 27, 1297. (d) Herrmann, W. A. J. Organomet. Chem. 1990, 382, 1.
- (4) Reviews on organometallic oxides in general: (a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley-Interscience: New York, 1988. (b) Bottomley, F.; Sutin, L. Adv. Organomet. Chem. 1988, 28, 339
- (5) Szyperski, T.; Schwerdtfeger, P. Angew. Chem. 1989, 101, 1271; Angew.
- Chem., 1n. Ed. Engl. 1989, 28, 1228. (a) Herrmann, W. A.; Ladwig, M.; Kiprof, P.; Riede, J. J. Organomet. Chem. 1988, 371, C13. (b) Herrmann, W. A.; Romao, C. C.; Fischer, R. W.; Kiprof, P.; de Méric de Bellefon, C. Angew. Chem. 1991, 103,
- 183; Angew. Chem., Int. Ed. Engl. 1991, 30, 185.
 (a) Herrmann, W. A.; Voss, E.; Flöel, M. J. Organomet. Chem. 1985, 297, C5.
 (b) Herrmann, W. A.; Okuda, J. J. Mol. Catal. 1987, 41, 109.
 (c) Herrmann, W. A.; Kuchler, J. G.; Weichselbaumer, G.; Herdtweck, Kiprof, P. J. Organomet. Chem. 1989, 372, 351. (d) Herrmann, W. A.; Kiprof, P. J. Organomet. Chem. 1989, 372, 351. (d) Herrmann, W. A.; Kiprof, P.; Rypdal, K.; Tremmel, J.; Blom, R.; Alberto, R.; Behm, J.; Albach, R. W.; Bock, H.; Solouki, B.; Mink, Lichtenberger, D.; Gruhn, N., N. E. J. Am. Chem. Soc., in press. (e) Wolowiec, S.; Kochi, J. Inorg. Chem. 1991, 30, 1215. (f) Riedel, A. Diploma Thesis, Ulaivariate Manabana 1963. These realists environment with wave and the second seco Universität München, 1963. These results agree with our own observations: only oxidation of the cyclopentadienyl reagent occurs. Trace amounts of 3a are formed upon treatment of Re_3O_7 with $(C_5H_3)Ti(O-I-C_3H_7)_3$; cf.: Jung, K. A. Ph.D. Thesis, Technische Universität München, 1990.

Table I. Infrared and ¹⁷O NMR Data for Organic Rhenium(VII) Oxides of Formula RReO1

complex	solvent	$\nu(\text{Re}), a \text{ cm}^{-1}$	δ, ppm
$(\eta^{5}-C_{5}H_{5})$ ReO ₃	CH ₂ Cl ₂	933 m, 907 vs	691 (CDCl ₃)
	KBr	925 m, 888 vs	
	Nujol	929 m, 885 vs	
$(\eta^{5}-C_{5}H_{4}Me)ReO_{3}$	CH ₂ Cl ₂	930 m, 898 vs	674 (CDCl ₃)
	KBr	925 m, 889 sh, 878 vs	
$(\eta^{5}-C_{5}Me_{5})ReO_{3}$	C6H6	920 m, 890 s	646 (CDCl ₃) ^b
	CS ₂	922 s–vs, 892 vs	
	KBr	909 s–vs, 878 vs	
	CH ₂ Cl ₂	918 m, 886 s	
CH3ReO3	C₄H₄ ¯	999 w, 966 vs	829 (CDCl ₃)
	CS ₂	1001 w, 965 vs	
	KBr	1005 w, 958 vs, br	
	CH ₂ Cl ₂	1000 w, 966 vs	
$(\eta^1 - C_6 H_5) \text{ReO}_3$	KBr	986 m, 956 s	972 (pentane)
	CCl₄	988 m, 960 s	

^aAbbreviations: Me = CH₃; vs = very strong, s = strong, m = medium, sh = shoulder, w = weak. ^bKneuper, H. J.; Härter, P.; Herrmann, W. A. J. Organomet. Chem. 1988, 340, 353.

The components react even at -80 °C, with the insoluble zinc-perrhenate 4a being formed as a colorless precipitate. After evaporation of the solvent in vacuo at 0 °C, the product was extracted into toluene, giving a yellow solution from which the title compound 3a was crystallized at -30 °C as yellow needles. 3a is stable at room temperature and up to 130-180 °C (slow decomposition) and is soluble in common organic solvents. The compound is not air-sensitive but undergoes slow decomposition upon exposure to light. 3a can be sublimed in vacuo at ca. 50 °C/(10⁻⁴ Torr).

Title Compound: A π -Complex. The C₅H₅ ligand shows a single sharp signal both in the ¹H and ¹³C[¹H] NMR spectra, $\delta(H) =$ 6.60 ppm and $\delta(C) = 118.6$ ppm, respectively (THF- d_8 , 20 °C). This pattern does not change upon cooling the samples to -100°C (THF- d_8), thus making σ -coordination highly unlikely. The

- (8) The preparation of 3b is as follows. To a solution of Re₂O₇ (968 mg, 2 mmol) in THF (30 mL) at -80 °C was added dropwise a solution of $Zn(C_3H_3)_2$ (195 mg, 1 mmol)⁹⁴ in THF (20 mL). The mixture was allowed to warm slowly to room temperature and then stirred for ap-proximately 2 h until the color of the solution turns black. The mixture was protected from light during the time of the reaction. The resulting solution was evaporated to dryness in vacuo at 0 °C, and the residue was extracted once into *n*-pentane (20 mL) and then into toluene (5 \times 40 mL) until the extracts become colorless. After the toluene fractions was extracted once into h-pentane (20 mL) and then into fouriene (3 x 40 mL) until the extracts become colorless. After the toluene fractions were cooled to -20 °C, yellow microcrystals formed. These were filtered and dried in vacuo to yield 270 mg (45%) of 3a. The mother liquors were combined, concentrated to ca. 50 mL, and cooled to 30 °C to afford another crop of 3a (60 mg). Total yield: 330 mg (56% on the basis of eq 1). IR KBr, cm⁻¹): 925 m, 888 vs $[\nu(Re=O)]$; further bands, 854 m, 1017 w, 1430 w, 3102 m $[\nu(C-H)]$. IR (Nujol, cm⁻¹): 929 m, 885 vs $[\nu(Re=O)]$; further bands, 617 m, 857 sh, 1017 w, 1112 s, 1428 m, 3101 m $[\nu(C-H)]$. IR (CH₂Cl₂, cm⁻¹): 933 m, 907 vs $[\nu(Re=O)]$; further bands, 844 m, 1016 w, 1466 w, 2926 m, 3115 m $[\nu(C-H)]$. ¹H NMR (20 °C, ppm): δ 5.70 (C₆D₆), 6.94 (CDCl₃), 6.93 (CD₂Cl₂), 6.60 (THF-d₈). ¹H NMR (-60 °C, ppm): δ 6.99 (CDCl₃). ¹H NMR (-100 °C, ppm): δ 118.2 (THF-d₈). ¹³C¹H¹</sup> NMR (20 °C, ppm): δ 118.2 (THF-d₈). ¹³C¹H¹ NMR (20 °C, ppm): δ 114.1 (d quint, ¹J_{CH} = 181.6 Hz, ²J_{CH} = ³J_{CH} = 6.4 Hz, CD₂Cl₂), 117.8 (d quint, ¹J_{CH} = 173 Hz, ²J_{CH} = ³J_{CH} = 6.1 Hz, (THF-d₈). ¹³C¹H¹</sup> brown coloration upon prolonged heating in the temperature range E1-MS: m/z = 300 (parent ion, ¹³⁷Re). Slow decomposition with brown coloration upon prolonged heating in the temperature range 130-180 °C; no defined melting point. The preparation of (CH₃C₅-H₄)ReO₃ (2b) from Re₂O₇ and Zn(CH₃C₃H₄)₂^b follows the above procedure. Yield: 50% on the basis of eq 1. IR (KBr, cm⁻¹) 925 m, 889 sh, 878 s [ν (Re=-O)]; further bands, 838 w, 855 m, 1040 w, 1490 m, 2361 w, 3100 m [ν (C-H)]. IR (CH₂Cl₂, cm⁻¹): 930 m, 898 vs [ν (Re=O)]; further bands, 847 m, 875 w, 1034 w, 1520 m, 3110 m [ν (C-H)]. ¹H NMR (20 °C, ppm): δ 6.85 [AA'BB', 2 H], 6.32 [AA'BB', 2 H], 2.39 (s, 3 H, CDCl₃), 6.86 (2 H), 6.34 (t, 2 H), 2.37 (s, 3 H, CD₂Cl₂). ¹³C ¹H} NMR (20 °C, ppm): δ 136.9 (13.9, 106.9, 13.6 (CD₂Cl₂). ¹³C ¹H} NMR (20 °C, ppm): δ 136.9 (s), 113.9 (dm, ¹J_{CH} = 182.5 Hz), 106.9 (dm, ¹J_{CH} = 178 Hz), 13.6 (q, ¹J_{CH} = 130 Hz, = 182.5 Hz), 106.9 (dm, ${}^{1}J_{CH} = 178$ Hz), 13.6 (q, ${}^{1}J_{CH} = 130$ Hz, CD₂Cl₂). Elemental analyses (C, H, Re) confirm the composition C₆H₇O₃Re. EI-MS: m/z = 314 (parent ion, 187 Re). (a) Lorberth, J. J. Organomet. Chem. 1969, 19, 189. (b) Fischer, B.; (9)
- Boersma, J.; van Koten, G. New J. Chem. 1988, 12, 613.

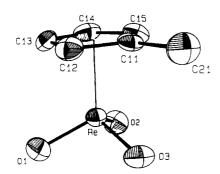


Figure 1. ORTEP representation of the crystal and molecular structure of $(\eta^5$ -methylcyclopentadienyl)trioxorhenium(VII) (3b), without hydrogen atoms. Thermal ellipsoids are drawn to 50% probability. Selected bond distances (pm) and angles (deg): Re-O1 = 173.1 (3), Re-O2 = 171.8 (3), Re-O3 = 171.1 (3), Re-C = 236.0 (3)-245.9 (3); O1-Re-O2 = 105.7 (1), O2-Re-O3 = 104.5 (1), Cp-Re-O1 = 114.4 (1) (Cp = 100.7 (1))center of $C_{5}H_{4}CH_{3}$ ligand).

¹H NMR pattern of **3b** (see below) rules out both rigid and dynamic σ -coordination. Infrared spectra of **3a** and **3b** support the presence of aromatic π -ligands (Table I). In accord with the structural assignment of π -complexation, the ¹⁷O NMR and IR data for the *ReO* moiety are much closer to those of (η^{5}) C_5Me_5)ReO₃ than to those of the σ -alkyl series R-ReO₃ (Table I).

It can be seen that methylation of the ring ligand C_5H_5 leads to lower ReO bond strength (lower stretching frequencies) due to the +I effect of methyl groups.

 $(\eta^5$ -Methylcyclopentadienyl)trioxorhenium (3b) was synthesized in the same way from 1 and 2b, according to eq 1. Spectra and physical properties of this compound are similar.

The above structural assignment was demonstrated for the crystalline phase by an X-ray diffraction study (Figure 1).¹⁰

While 3a is disordered, the less symmetrical methyl derivative **3b** shows an almost undistorted π -coordination of the C₅ ring ligand, with relatively long Re…C bonds of 236.0 (3) -245.9 (3) pm as compared to those of the *low-valent* congeners (η^5 - C_5H_5)Re(CO)₃ (228 pm, average)¹¹ and (η^5 - C_5H_4 SiMe₃)Re(CO)₃ (230 pm, average).^{11b} This result is due to the pronounced $\pi^$ donator capability (trans influence) of metal-attached oxo groups.

The analogous imido complexes $(C_5H_5)Re(=NR)_3$ and $(C_5Me_5)Re(=NR)_3$ have escaped isolation inspite of the extraordinarily high thermal stability of the σ -allyl complex (η^{1} - $C_{3}H_{5}Re(=NR)_{3}$ (R = $-C_{6}H_{3}-2,5-(CH_{3})_{2}$).¹² It was suggested that π -coordination of the C₅H₅ ligand at tris(imido)rhenium fragments is not favored.12

Compound 3a is the first example within the series $(C_5H_5)MX_3$, with X representing oxo or imido groups =0 or =NR, respectively. A recent failure to access such compounds happened to Wilkinson et al., who, in unspecified yields, obtained a strangely composed oxygen-containing compound by treatment of ClRe- $(=NR)_3$ with Na[C₅H₅].¹³ In light of our results, there is no doubt that imido complexes $(C_5H_5)Re(=NR)_3$ will become accessible by appropriate synthetic routes, even if the C_5H_5 ligand may be σ -bonded.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz Award to W.A.H.), the Alexander von Humboldt Foundation (fellowships to M.T. and C. M.B.), and the Hanns-Seidel-Stiftung (fellowship to J.B.).

Supplementary Material Available: Tables of anisotropic temperature factors and hydrogen atom coordinates for 3b, complete lists of atomic coordinates, bond distances, and bond angles, and a unit cell diagram (7 pages); a listing of structure factors (7 pages). Ordering information is given on any current masthead page.

- (11) (a) Fitzpatrick, P. J.; Le Page, Y.; Butler, I. S. Acta Crystallogr., Sect. B 1981, 37, 1052. (b) Harrison, W.; Trotter, J. J. Chem. Soc., Dalton Trans. 1972, 678
- (a) Herrmann, W. A.; Weichselbaumer, G.; Paciello, R. A.; Fischer, R. A.; Herdtweck, E.; Okuda, J.; Marz, D. W. Organometallics 1990, 9, 489.
 (b) Cook, M. R.; Herrmann, W. A.; Takacs, J.; Kiprof, P. J. Chem. Soc., Dalton Trans. 1991, 797. (13) Danopoulos, A. A.; Wilkinson, G.; Williams, D. J. J. Chem. Soc., Chem.
- Commun. 1991, 181.

Anorganisch-chemisches Institut der	Wolfgang A. Herrmann*
Technischen Universität München	Marc Taillefer
Lichtenbergstrasse 4	Claude de Méric de Bellefon
D-8046 Garching, Germany	Joachim Behm

Received March 29, 1991

⁽¹⁰⁾ Crystal data for 3b (ReC₆H₇O₃): yellow columns, $0.1 \times 0.02 \times 0.03$ mm; $M_r = 313.3$; space group $P2_1/c$ (No. 14); a = 6.000 (1) Å; b = 10.724 (1) Å; c = 10.644 (1) Å, $\beta = 91.99$ (1)°; V = 684 (1) Å³; Z = 4; $d_{calc} = 3.04$ g cm⁻³; Enraf-Nonius CAD4-instrument; 295 K; Cu K α ($\lambda = 1.54184$ Å); scan method, $\omega/26$; data collection range, 1° < $\theta < 684$ 65°; total number of data measured, 1356 (81 systematic absences and 147 reflections with negative intensity were eliminated, the number of unique data being 1128); total number of data used 1118 (10 peaks were removed due to bad agreement); solution by heavy atom methods (Patterson and Fourier) with full-matrix least-squares refinement to convergence (number of refined parameters 92); extinction corrected, $\epsilon = 3.78 \times 10^{-6}$; R = 0.031; $R_w = 0.030$; GOF = 3.87; from final difference Fourier maps, a residual electron density of +1.2 and -2.2 e/A^3 , respectively (87 and 93 pm from Re).